Egyptian Hieroglyphies and LogoWriter
 by

Thomas F. Troce
© 1992 Themas F. Troces*
Gomputer Department Chair
Computer Teacher, Grades 2-9
St. Hilda's \& St. Hugh's Sehool
New York, NY
You may copy and distribute this document for edueational purposes provided that you do not eharge for such copies and that this copyright notice is reproduced in full.

Acknowledgments: Thanks to Michael Tempel, Ellen Siegel, David Ross, and Laura Allen for their inspiration, comments, and suggestions.

Special thanks to Adaya Alston, Tyler Barnes, Tracy Blount, Sandy Cid, Vanessa Cook, Matthew Graves, Madeline Kende Howe, Kristima Negron, Nadir Quadir, Maritza Shaeffer, Saliou Seck, Michael Simon, Austin Shat, Latra Stickney, Etienne Van Harte, Marcos Antonio Vega, and Mark Verma for their excitement, cooperation, and hard work all semester long.

* Correspondence can be-sent to:

Themas F. Trocer
The Calhom School
-433 West End Avente
-New York, NY 10024

Logo Foundation
250 West 57th Street, Suite 2228
New York, NY 10107-228
Felephone: (212) 765-4918
FAX: (212) 765-4789

Board of Directors
Seymour Papert, Chair
Elotilde Fonseca
Tessa R. Harvey
Geraldine Kozberg
Michael Tempel
Takayuki Tsum
The Logo Foumdation is a nonprofit educational organization incorporated in New York State.

The Setting

Students at St. Hilda's and St. Hugh's School practice keyboarding and use educational softwarein the presehool with their classroom teachers. Beginning in second grade, students work with LogoWriter in the computer lab. The students meet with me once or twice a week for programming projects. Each class is forty mintetes long, with a five minmte break between periods. I ustally begin each unit by introducing a new concept or command, or by posing a question or problem. Then the students work on experimentation, application, and testing throughout the duration of the unit, which varies from one period to one semester. Often, thereare a few interrelated concepts and questions being worked on simultaneously. I meet with half of the second grade (9 students) at a time. From third through ninth grade, I meet with the entireelass (up to 18 students). These classes include word processing and book-making in the secondgrade; simple animation in the third grade; mieroworld "town" construction with coordinateplotting in the fourth grade; ancient Egypt-based projects in the fifth grade; branching, animated adventure - stories based on Arthurian legend in the sixth grade; and random number projects (involving math, language, and graphies) in the seventh grade. Class time is divided betweenindividual work, work in pairs, and work in cooperative groups of four. Many classes also use the lab for Writers' Workshops using LogoWriter with their language arts teachers. During theEgyptian Hieroglyphies project, the lab contained fourteen MSDOS computers rumningLogoWriter 2.0 and seven Commodore 64 computers rumning LogoWriter 1.1.

Introduction

The seventeen Fifth Graders and their Social Studies teacher began their study of ancient history with Egypt during the Fall, 1991 semester. At this time, I showed the students Fun With Hieroglyphs.* This kit contains a book, a stamp pad, and 24 rubber stamps, each representing one Hieroglyphic. The students immediately saw a connection between these Hieroglyphic shapes and the shapes in LogoWriter, and decided that it would be fun to try to do something similar int LogoWriter.

[^0]To begin the unit the students were assigned reading to familiarize them with Hieroglyphies. They read Catharine Roehrig's booklet as well as other sotrees assigned by their social studies teacher. Then the students typed what they had learned into their LogoWriter joumats. This included:

- Hieroglyphies began as pictures which represented objects.
- It is easy to create a system where symbols stand for objects, but diffieult if ideas or verbs haveto be symbolized.
- Most Hieroglyphies later came to represent sounds, though some remained as symbols for specific objects, such as the sum, and some came to represent syllables.
- The Rosetta stone, discovered in 1799, was the key to translating Hieroglyphies.
- There is no one-to-one correspondence between Egyptian and English: there are sounds int Egyptian not found in English and vice-versa.
- Hieroglyphies can be written right to left, left to right, or top to bottom.
- Very few people in ancient Egypt could read or write. Those who could had the important profession of scribe.

A disetussion followed on how to apply what they had leamed in LogoWriter. The students decided to begin by creating a LogoWriter shape for each Hieroglyphic. In LogoWriter, the tartle ean be changed to a different image by using the setsh command, followed by the number of the shape (e.g. setsh 23). In MSDOS LogoWriter, ninety different shapes can be created. A turtlethat is assigned one of these-shapes can be moved around. The-shape may be stamped on thesereen or used to shade (tile) an enelosed area on the sereen. Even though the shape may nolonger be that of a turtle, it is still referred to as a turtle. The students were given paper with grids of 16 X 16 boxes, corresponding to the 16 X 16 grid of the LogoWriter Shape Editor, so they eould each design one Hieroglyphic for homework. -

The students decided that they would use only the Hieroglyphies which represented individual sounds so that their 'code' could be more easily translated into English. They felt that if they also used shapes to symbolize words, it would be confusing. There were problems with a few letterswhere there is not a one-to-one correspondence between English and Hieroglyphics. In spoken Egyptian, the R and L sound, the O and W sound, and the F and V sound were the same, so each pair of (English) letters is designated by one Hieroglyphic. The students immediately identified with this sittration: one Asian-American student commented on the similarity of R and L int Japanese and one Latina student

[^1]-
eommented on the similarity of V and B in Spanish. For three English letters, Q, U, and X, more than one Hieroglyphic had to be used (C + I + O; I + O; and C + S, respectively).*-

I took the shapes created by the students and cut and pasted them onto a single scrapbook disk. I gave a copy to each student. Students were allowed to experiment with these new shapes. Many used the Turtle Move key (learned in Second-Grade) to move and stamp messages. This involved the following steps:

1. Press the turtle move key (F9 in MSDOS).
Z. Use the arrow keys to move the turtle to the desired spot.
2. Press the escape key to exit from turtle move mode.
3. Set the color with sete <ntmber>.
4. Type stamp to stamp the turtle's image on the screen.

Some students animated their Hieroglyphics. The bird (shape 76 representing the letter O) was set in motion with commands such as
repeat 999 [fd 2 wait 1$]$
Then a second copy of the bird with wings in the up position was made as shape 85 . The bird eould then be made to fly with the instruction
repeat 999 [setsh 85 fd 1 wait 1 setsh 76 fd 1 wait 1$]$
After some experimentation, a class diseussion was called to decide what could be done with these new shapes. Students decided by consensus that a program which automatieally translated English into Hieroglyphies would be an improvement over using Turtle Move and Stamp. Somestudents began this work individually, while others worked in pairs. (Pairing was more often dueto the lack of sufficient computers, than a matter of choice.)

Development of the Program
The students wanted to type a letter and have the turtle's shape change. A new primitive, readehar, was introduced. The students were asked to type readehar in the command center to see what it did. Most of them responded that nothing was happening. Some students then noticed that the etrsor had disappeared. They pressed keys at this peint and saw LogoWriter messages sueh as

Idon't know what to do with a.

өチ

I don't know what to do with z .

[^2]depending upen which key was pressed.
A class diseussion ensued. When else had this message appeared? Some students remembered seeing this sort of message when they'd typed in numbers alone, or typed in an arithmetic expression such as $3+4$. This message would also result from typing some Logo primitives, like heading, shape, or color alone. It was explained that this was beeause these procedures (ineluding +, which is a procedtre) were "reporters". A reporter is a kind of procedure that reportssomething to another procedure. If there is no procedure to receive the report, Logo complains with a message. On the other hand,
print heading
show 3-4
setc color +1
are all correct and don't generate messages. Readchar is a reporter that waits for a key to bepressed and then reports the character to another procedure. Once this was clear, a procedurewas written:
to translate
if equal? readehar "a [setsh 62]
end

It was obvious that although this would work for the letter " A ", nothing would happen for other letters.

The concept of variables had been introduced earlier. They were being presented in the context of graphies procedures so the students could more easily see the effects of making changes. Oneprocedure was:
to square :side
repeat 4 [fd : side rt 90]
end
This procedtre was put to use when combining the coneepts of variables and readehar:

```
tostaft
type [Enter a number between 0 and 9 to make a square.]
square readehar
end
to square :side
repeat 4 [fd 10* :side rt 90]
end
```

The behavior of readchar and the concepts of input and output were discussed. Students acted out the start procedure. The student playing the part of the readchar procedure passed a piece of paper with a keyboard character on it
to the square procedure, where it was given the name "side" and passed to the * procedure.

The translate procedtre was then modified. One line for each letter was added. *-
to tramslate :letter
if equal? :letter "a [setsh 62]
if equal? :letter "b [setsh 63]

if equal? :letter "z [setsh 82]
end
For this program, the following shapes were used:
61-e
62-a
63-b
64-c
65-s
67-d
$68-y$
69-f/v
71 -
72-h
73-1/r
74-m
75-n
76-0/w
79-1
82-z
83-k
$84-$ i
The number 61 was chesen as a starting peint because-shapes $61-90$ had not been previously used by any students. There are reasons why the alphabetical and numerieal orders do not coincideThe shapes were created in the order listed in Fun With Hieroglyphics. The first two shapes (61 and 62) were for different sounds of the letter Λ. Later it was decided that the first was close enough to E to use that one. Likewise, the fourth and fifth (64 and 65) were for different soundsof the letter G. Therefore, the soft G (the \mathcal{S}-sound) appears in this sequenee.

The students wanted translate to contintue translating; not just translate one letter and stop. After some debate, one student suggested that the last line of the procedure should be the procedure-

[^3]name itself; a student diseovery of reetrsion. The procedure was again modified. This new last line was added:
translate readehar

Now they realized that this procedure didn't stamp, so it was modified again. Stamp was added after each setsh:
if equal? :letter "a [setsh 62 stamp]
Now the students saw that all shapes would be stamped on top of each other, so the stampeommand was changed to the stamper procedure:
if equal? :letter "a [setsh 62 stamper]
The amount for fd in the stamper procedure varied. Some students preferred Hieroglyphies as elose to each other as possible (fd 16), while some others spread them out quite a bit (fd 30):
to stamper
pd stamp pur
fd 20
end

A second stamper procedure, with a smaller fd, was used for Q, U, and X , where more than oneshape had to be stamped:
to stamper.small
pd stamp pu
fd 10
end

A stamper procedtre which accepts inputs for the distance moved between symbols could havebeen used instead of two separate stampers:
tostamper: :distance
pd stamp pur
fd: distance
end

Now the stamping worked, but the symbols appeared vertically because the turtle's heading was zero. A settep procedure was written:
to setup
rg
ef
ef

ht

pu
getshapes
ff 90
end

Some students discovered that they were using the wrong shapes. LogoWriter will use whatever shapes are eurrently in memory. In this case, those were the shapes on the original LogoWriter program disk. Getshapes causes LogoWriter to use the custom shapes on the student's scrapbook disk.

The students had been introduced to ef (for erase front) when they began programming on the-flip-side back in Third Grade, and they now put it on $A L L$ pages.

Łeff
if not front? [flip]
e
end

They have learned, some the hard way, never to use ct. They have seen the result of using ct when working in the command center while on the flip-side of the page: all the procedtres areerased.

Next the students wanted to put some finishing touches on the program. Most of the-students wanted to begin stamping in the upper left corner of the screen. The concept of setpos had beent introduced earlier in the year. During the Hieroglyphie project, the class was spending one day a week experimenting with new concepts such as setpos and one day a week on Hieroglyphies. From this work, the following line was added to the setup procedtre:
setpos $[-15080]$

Now the students wanted to be able to make spaces between words, skip to the next line, and exit from the recursive procedure. Each student tried this short procedure and learned the ASEH codes of the characters they wanted to test:
to ascii.codes
show aseii readehar
ascii.codes
end

The following lines were added to translate:

if equal? :letter char $32[f d 30]$
(If the-spacebar is pressed, move fd 30.)
(\ddagger the enter key is pressed, move the turtle to the left edge and 20 -steps below where it was.)
if equal? :letter char 27 [ec stop]
(If the escape key is pressed, clear the command center and stop.)
The only diffieulty was with sety yeor - 20. The concept of relative distance (20 steps below where you eurrently are) was difficult for some students, even though it is basically a back 20 . The students stood on the tiled floor in the computer lab. Each student moved two tiles below where they were each time a "keyboard" student passed a char 13 to the "readehar" student who passed it to the "translate" student. An alternate way of moving to the next line might be:
if equal? :letter char 13 [setx -150 seth 0 bk 20 seth 90$]$
Because the students had leamed setx and sety earlier in the year, it seemed to be a good way of reinforcing this concept in a simple and elegant way without the problem of changing theheading of the tuttle wice.
fnstructions were then added:
to instructions
type [Type any word to be translated into hieroglyphies.
Hit spacebar for a space, enter for a new line,
-andese tostop.?
ehar 13
end

Once the students were satisfied with their programs, a great deal of time was provided for ereating messages in Hieroglyphies. These messages fell into two categories: those that could beposted for parents to see, and those that were private. The private messages included Egyptian Hieroglyphic Valentine's Day cards, and even more private messages. Students were allowed to pass notes as long as they were created with this program. ${ }^{*}$ -

Strecesses

Since this was an almost totally student-designed and directed project, there has been moreinterest and foeus than in most other long-term projects. New concepts were introduced as they were needed by the students. Student mastery of these concepts was more rapid and moreeomplete dtee to the their need to know, their sense of ownership of the project, and the way in which it reinforced their work in social studies class. These new concepts and commands includeASCH codes, equal?, if, output, passing of variable values, phonetics, readehar, recursion, setpos, similarities and dissimilarities in sounds of languages, symbols, the importance of written-

[^4]-
language, translation, and variables. Previously learned coneepts have been reinforeed. Thestudents have had the opportmity to work individually, in pairs, in teams, and as an entire class. My role has been that of consultant rather than leader.

Problems

This was a semester-long project. By the time we had completed our program, the Fifth Gradewas studying the Middle Ages. Some students had trouble keeping up their interest throughout the entire project. Although invited, the Fifth Grade social studies teacher was not able to visit and see the students' work until two months after the project was completed. Numerous short visits by
subject teachers during a project would better integrate computers into other subjects and allow both teachers to see each other's ideas and styles of guiding students.

Proposed Additions

Students have asked if they could add:

- a backspace /erase key to erase stamped shapes.

This could be accomplished by the following:
if equal? :letter char $8[\mathrm{pu}$ setx xeor -10 setsh 11 pe stamp pu]
Shape 11 is the solid square, which will erase everything under it if pe (pen erase) is used. Theamount to move back (10) should be a fraction of the number of steps moved in stamper (20), stamper.small (10), and in spacing over (30), so it cam be pressed onee, twiee, or thrice to erase a mistake.

- an attomatic printsereen key.

This could be accomplished using the when command. Add this line to stantup:

when "p [printsereen]

And in translate, change
if equal? :letter char 27 [ec stop]
\pm
if equal? :letter char 27 [pr.inst stop]
Now add this procedure:
to pr.inst
€
type[Type etrl-p to print your message.]
type char 13
end
-shapes for numbers and punctuation marks.
The students could create shapes for English punctuation and Arabic numbers. Many students have already created these for use in other procedures.

If they wish the students will work on these additions during in-class or after-class free time.

Suggestions

Some things which have ocetrred to me for the futtre are:
1.These procedures could be applied to any symbolic language: Mayan Hieroglyphies, Ancient Rumes, Klingon letters, student-designed Hieroglyphies, ete.
Z.Each shape could be stored under the number corresponding to the ASCH code of its letter. For example, the Hieroglyphic shape for A would be shape 65, B would be 66, Z would be 90 , etc. After students have mastered the concept, their translate procedure could be greatly simplified:
to tramslate :letter
ifelse (ascii :letter) >90
[setsh (ascii :letter) - 32 stamper]
[setsh ascii :letter stamper]
translate readehar
end
This would be a good way to show the students how program code can often be simplified when simple rules are used. This would also introduce the coneept of ifelse, and the fact that upper and lower case letters are 32 characters apart in ASCH code. Testing for the spacebar, the enter key, and the ese key would have to be done differently.

Program Listing

```
tostaft
settu
instructions
translate readehar
end
to setup
rg
EC
ef
ht
p#
getshapes
setpos [-145 50]
f49
end
toef
if not front?[flip]
\epsilont
end
to instructions
type [Type any word to be translated into hieroglyphies.
Hit spacebar for a space, enter for a new line,
and ese to stop.}
type char 13
end
```

to stamper
pd stamp pu
fd 20
end
to stamper.small
pd stamp pt
fd 10
end

```
to translate :letter
if equal? :letter "a [setsh 62-stamper]
if equal? :letter "b [setsh 63 stamper]
if equal?: letter "e [setsh 64 stamper]
if equal? :letter "d[setsh 67-stamper]
if equal? :letter "e [setsh 61 stamper]
if equal?: letter "f [setsh 69-stamper]
if equal?.letter "g [setsh 70 stamper]
if equal?.letter "h [setsh 72 stamper]
if equal? :letter "i [setsh 84 stamper]
if equal? :letter "j [setsh 71 stamper]
if equal? :letter "k [setsh 83 stamper]
if equal? :letter "1 [setsh 73-stamper]
if equal? :letter "m}[\mathrm{ [setsh 74 stamper]
if equal? :letter "n [setsh 75 stamper]
if equal? :letter "0 [setsh 76 stamper]
if equal? :letter "p [setsh 77 stamper]
if equal?: :letter "q[setsh 64 stamper.smalt
setsh 84 stamper.small
    setsh 76 stamper]
if equal? :letter "r [setsh 73-stamper]
if equal? :letter "s [setsh 65 stamper]
if equal? :letter "t [setsh 79-stamper]
if equal? :letter "u [setsh 84 stamper.small
    setsh 76 stamper]
if equal? :letter "v [setsh 69 stamper]
if equal? :letter "w [setsh 76-stamper]
if equal? :letter "x [setsh 64 stamper.smal!
                        setsh 65 stamper]
if equal? :letter "y [setsh 68 stamper]
if equal?.letter "z [setsh 82 stamper]
if equal?:letter char 32 [fd 30]
if equal? :letter char 13 [setx - 150 sety yeor - 20]
if equal?:letter char 27 [ec stop]
tramslate readchar
end
```


Appendix I-

Translation Chart and Student Messages

Appendix H
Other Versions of Loge

This project was developed using the MSDOS version of LogoWriter. Below are the major differences you will need to take account of when adapting it to other versions of Logo. ${ }^{*}$ -

Apple and Macintosh LogoWriter

There are only minor differences between versions of LogoWriter:
LogoWriter for the Apple He uses a shape grid that is 10×14 pixels; so the shapes will not look quite the same. There are 30 shapes instead of 90 . It will be necessary to replace most of thepredefined shapes.

LogoWriter for the Macintosh uses a shape grid of 20×20 pixels.
On page 10 the suggested "backspace / erase key" depends upen the backspace key having an ASCH nmmber of 8 . This is true for MSDOS and Macintosh computers, but on Apple Ψ^{+} eomputers the number is 127.

LCSI Logo II

LCSI Logo II has a 10×16 shape grid. Shapes are saved and retrieved in a different manner.
There are Logo language differences. The ef procedure isn't relevant and equal? should beehanged to equalp.

Ferrapin Logo for the Macintosh

Ferrapin Loge for the Macintesh uses a shape grid of 30×30 pixels. The process of creating, editing, saving, and loading shapes is different. There are Logo lang tage differences. The ef procedure isn't relevant. You'll need to use substitutes for type, ec, rg, and readehar.

[^5]
Logo Plus

The Logo language differences mentioned above for Terrapin Logo for the Macintosh apply to Logo Plus, as well. Also, the syntax of the if command is different.

Shapes in Logo Plus are not limited to a preset grid and may be of any size.

There are also a number of extinct versions of Logo that allowed the user to create original shapes and are well suited to this project: THOGO, Sprite Logo, Atari Logo, MSX Loge, and Smart Logo for the Coleco Adam.

[^0]: *Reehrig, Gatharine (1990) Fun With Hieroglyphs. The Metropolitan Museum of Art, New York, and Viking, A Division of Penguin Books USA Ine., 375 Hudson Street, New York, NY 10014. item \#04-01130-0 \$19.95

[^1]: *-See translation table in Appendix I

[^2]: *See Program Listing.

[^3]: *See the Program Listing.

[^4]: *-See examples in Appendix I.

[^5]: *We only diseuss versions of Logo that include the capability of creating original turtle-shapes. It would be possible to develop this project using a Logo without such capability, but to do so would require a major redesign of the project.

